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Abstract: In this paper we use geometric tools to establish controllability properties of driftless systems which have

less control inputs than states, but whose input vector fields span a non-involutive distribution. Our prototypical class of

systems is conformed by kinematic models of non-holonomic systems such as the unicycle or a car with N trailers. We

restrict our class of inputs to those which are piecewise constant. The restriction gives way to an easy implementation

in discrete time and allows to formulate control problems as systems of polynomial equations. The control problems can

then be addressed using geometric-algebraic tools and can be solved explicitly using symbolic computational software if

their size is reasonable.
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1. INTRODUCTION

Controllability of nonlinear systems can be ap-

proached from several angles. From the geometric per-

spective, controllability is assessed by analyzing the dis-

tributions that are produced from the Lie brackets of the

various vector fields that affect the system under study [6,

8]. A result that has had a large amount of success in this

context is Chow’s theorem, which provides a necessary

and sufficient condition for controllability of driftless sys-

tems. Roughly speaking, the condition is that the Lie al-

gebra evaluated at each state must span all of the tangent

space of the manifold on which the system evolves. The

result has found many applications, e.g., in the control of

kinematic models for mobile robots [7].

Geometric tools become particularly relevant for ap-

plications when the Lie algebra generated by the vector

fields is nilpotent, as this property renders the controlla-

bility problem mathematically tractable. One of the sim-

plest examples of a driftless system which has a nilpotent

Lie algebra and at the same time satisfies the condition of

Chow’s theorem is Brockett’s celebrated non-holonomic

integrator (which happens to be diffeomorphic to the uni-

cycle [5]). In this paper we take interest in such class

of systems (nilpotent and which span the whole tangent

space). For concreteness, we focus on a five-dimensional

extension of the non-holonomic integrator.

In the geometric setting, controllability is understood

as the ability to steer the system state from an initial con-

dition to any sufficiently close desired final state. It is

well known that, unlike the linear case, controllability

does not necessarily imply the possibility of enforcing a

desired dynamical behavior. In other words, controllabil-

ity only allows to conclude the existence of an open loop

control law that drives the system state from one point to

another. Indeed, results in this area are usually gathered

under the name of ‘motion planning’ and make no refer-

ence to important dynamical properties such as stability.

Motion planning has been mostly achieved by the use

† Dmitry Gromov is the presenter of this paper.

of sinusoidal inputs whose amplitude and frequencies are

carefully chosen in order to achieve the desired motion [1,

7]. Our approach is similar, but the inputs that we con-

sider are piecewise constant. This setting has several

advantages: first, the resulting control laws can be di-

rectly implemented in discrete time (this can be useful,

e.g., when a communication network forbids fast sample

times). Second, due to the bilinearity of the Lie brackets,

the control problem is translated to a system of polyno-

mial equations that can be dealt with modern algebraic

tools already implemented in software packages such as

Maple or Maxima. Third, our goal is not only to achieve

a final state, but to enforce a desired discrete-time map,

so constraints on dynamical properties such as stability

can be easily formulated.

We define the notation and state the problem formally

in the following section. Section III presents some facts

about systems of polynomial equations. Section IV de-

picts the general methodology and states the main results.

Section V contains conclusions and future work.

2. PROBLEM STATEMENT

LetM be an n-dimensional regular smooth manifold

and let TM be the tangent bundle of M. Consider m
linearly independent vector fields X = {X1, . . . ,Xm},
m < n, Xi ∈ TM. The set X spans a linear subset of

TM, referred to as the m-dimensional tangent distribu-
tion,DX ⊂ TM. We are interested in the case where the

distribution is not involutive. To clarify the point, we first

define �(X) to be the Lie algebra generated by X, i.e.,

the union of X and the set of all Lie brackets [Xi, V ],
i = 1, . . . ,m, V ∈ �(X). A distribution DX is said to

be non-involutive if the Lie algebra �(X) spans TM. Lie

algebra �(X) generates a local Lie group L(X) which

acts smoothly on the underlying manifold M with left

actions given by exponential maps, exp(tZ) :M→M,

Z ∈ �(X). Finally, for each Lie algebra we can define a

basis consisting of (a possibly infinite number of) linearly

independent Lie brackets, referred to as the P. Hall basis,
[10, Chap. 11].
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The above formalism turns out to be useful when deal-

ing with driftless non-holonomic control systems such

that Xi are the control vector fields. The dynamics of

such a system is described by a set of differential equa-

tions

ẏ(t) =
m∑

i=1

ui(t)Xi(y(t)), (1)

where ui(t) are the piecewise smooth functions, referred

to as the controls.

System (1) is said to be small-time locally controllable
(STLC) at p ∈ M if for any sufficiently small T > 0 the

reachable set from p in time T contains p in its interior.

This is equivalent to saying that L(X) acts transitively in
a small neighborhood of p, denoted U(p) ⊂M, i.e., that

the orbit of p is all of U(p). The STLC property for a

driftless system (1) can be easily checked thanks to the

following theorem (see, e.g., [12, Corollary 7.2]).

Theorem 1 (Chow) System (1) is STLC at p ∈ M
iff the Lie algebra rank condition (LARC) holds, i.e.,

span
(
�(X)

∣∣
p

)
= TpM.

In the following we will restrict our attention to the

case of a nilpotent Lie algebra �(X).
Definition 1: Let the sequence Vi be defined such that

Vi+1 = [X,V i] and V0 = X. A Lie algebra �(X) gener-
ated by the vector fieldsX is said to be nilpotent or order
γ ≥ 1 if Vγ = 0.
Obviously, Vγ = 0 implies Vi = 0 for all i > γ.

The controllability property implies that for any p ∈
M and U(p) ⊂ M such that the LARC holds for any

q ∈ U(p) there exists an element g of the group L(X)
such that g(p) = q. Such an element can be written as an

exponential mapping g = exp(τXd) : M →M, Xd ∈
span

(
�(X)

)
. There is however an obstacle in using this

fact for control design. The vector fieldXd will typically

be composed not only of the vector fields from X, but

also from their Lie brackets which are not available to us.

The idea is to consider the composition of the expo-

nential mappings involving only the vector fields from

X:

eu
k
mτXm · · · euk

1τX1 · · · eu1
mτXm · · · eu1

2τX2eu
1
1τX1(p).

(2)

where uj
i , j = 1, . . . , k, i = 1, . . . ,m are constants to be

defined. This particular ordering might seem restrictive

at first (it is not possible, e.g., to construct a symmetric

method). In the following section we will show, however,

that it is general enough in most cases. This composition

corresponds to the solution of the system

ẏ = ui(t)Xi(y), y(0) = p

with controls

ui(t) =

⎧
⎪⎨
⎪⎩

uj
i ∈ R, t ∈ [mτj + τi,mτj + τ(i+ 1)) ,

j = 0, . . . , k − 1

0, otherwise.

We assume that all τ ’s sum up to T , which is the total

length of the interval. In other words, we split the time

interval [0, T ] into km subintervals τ = T
km and “actu-

ate” the i-th vector field with the constant factor (control)
u1
i during a single interval. As we have gone through all

vector fields, the procedure repeats with controls u2
i and

so on k times. Note that the piecewise control can be

readily implemented in discrete-time.

The composition (2) can be represented as the expo-

nential mapping of a new vector field Xu. To do so we

will make use of the Baker-Campbell-Hausdorff (BCH)

formula, which for the case of two exponential mappings

and keeping only the Lie brackets up to the third order is

Z(Y,X) = log(expY expX) = X + Y − 1

2
[X,Y ]

+
1

12
([Y, [Y,X]] + [X, [X,Y ]])+

1

24
[Y, [X, [X,Y ]]]+· · ·

One can observe that the following identity holds:

Z(X,Y ) = −Z(−Y,−X).

The resulting vector field can be written as a compo-

sition of the basis vectors of �(X): Xc =
∑h

i=1 vi(u)Vi,

h = dim(�(X)), Vi ∈ �(X), and vi(u) are polynomials

in uj
i . This can be interpreted as follows: the composition

of elementary movements generated by individual vector

fields results in a system evolution that can be considered

as being produced by a new vector field.

Using this approach one can formulate the following

constructive algorithm for determining the control inputs.

Given a point p ∈M,
1. Determine the desired vector field Xd(p).
2. Write Xd(p) in terms of the Lie algebra basis:

Xd(p) =

h∑

i=1

diVi(p),

Vi(p) ∈ �(X)
∣∣
p
, where di are constants.

3. Fix k and write the vector field Xc(p) resulting from

the composition of k sets ofm vector fields Xi(p), again
in terms of the Lie algebra basis:

Xc(p) =

h∑

i=1

vi(u)Vi(p),

where vi(u) are polynomial equations in variables uj
i of

degree not exceeding γ, with γ being the order of nilpo-

tency of the respective Lie algebra.

4. Determine the controls uj
i from solving the system of

polynomial equations vi(u) = di.
The outlined procedure can be repeated at each discrete

time instant t = jT , j = 0, 1, . . . , thus yielding a

discrete-time feedback control.

3. SYSTEMS OF POLYNOMIAL
EQUATIONS

In this section we will present some basic facts related

to solving (systems of) polynomial equations. For a de-
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tailed exposition on the subject see [2, Chap. 3], and [11,

Chap. 4].

We first recall some basic facts about solving polyno-

mial equations. Let x = {xi}, i = 1, . . . , n, be a set of

variables. A monomial is a product σ(x) =
∏n

j=1 x
kj

j ,

where kj ∈ N ∪ {0} are the non-negative integer pow-

ers. The sum of powers k =
∑n

j=1 kj is said to be the

degree of the monomial. A multivariate polynomial p(x)
is a sum of monomials in x multiplied by coefficients,

p(x) =
∑l

i=1 aiσi(x), where σi(x) are the respective

monomials and the coefficients are assumed to be from

a field F, ai ∈ F. In the context of the problem un-

der consideration, F is the set of either rational or real

numbers. A polynomial is said to be univariate (resp. bi-

variate) if the set of variables x consists of one (resp.,

two) elements. The degree of the polynomial p(s), de-
noted deg(p), is defined as the maximum of the degrees

of monomials contained in the polynomial. A polynomial

is said to be homogeneous of order m if all its monomi-

als have the same degree m. The notion of homogeneity

becomes trivial for univariate polynomials.

Definition 2: Consider two univariate polynomial

equations,

p(x) =

m∑

i=0

aix
m−i = 0, g(x) =

l∑

j=0

bjx
l−j = 0, (3)

the resultant of p(x) and g(x), denoted R(p, g), [2, §1,
Chap. 3], is a polynomial function of the coefficients

ai and bj which is defined as the determinant of the

Sylvester matrix associated with p(x) and g(x).
The resultant has a particularly important property as

stated in the following theorem (see [3, §6, Chap.3]).

Theorem 2: Polynomials p(x) and g(x) have a com-

mon root if and only if their resultant is equal to zero,

i.e.,R(p, g) = 0.
Note that the above result is equivalent to saying that p(x)
and g(x) have a common factor (x− x̄), where x̄ is their

common root.

In particular, the resultant of p(x) and g(x) can be rep-
resented in the following form:

R(p, g) = am0 bl0

m∏

i=1

l∏

j=1

(λi − μj),

where λi and μj are the roots of p(x) and g(x). The

resultant of a univariate polynomial p(x) and its first

derivative w.r.t. x is called the discriminant, D(p(x)) =
R(p(x), p′(x)). Theorem 2 implies that the discriminant

of p(x) is equal to zero when p(x) has a root of multi-

plicity greater than 1.

Resultants are very useful in solving systems of poly-

nomial equations. Consider the system of two bivariate

polynomials in (x, y):

p(x, y) = 0, g(x, y) = 0. (4)

Each of these polynomials can be written as a polynomial

in one variable with coefficients expressed as polynomi-

als in the remaining variable. Say, p(x, y) can be written

as

p(x, y) =

m∑

i=0

ai(y)x
m−i

or, alternatively as

p(x, y) =
m̄∑

i=0

āi(x)y
m̄−i,

where, m and m̄ are the largest exponents of x and y (in

general, m �= m̄) and deg(a0) ≤ deg(p) − m, resp.,

deg(ā0) ≤ deg(p) − m̄. Let p(x, y) and g(x, y) be rep-
resented as above with bi(y) and b̄i(x) being the coeffi-

cients of g(x, y). In the following, we will require the

following regularity assumption to hold.

Assumption 3: Coefficients a0(y), ā0(x) and b0(y),
b̄0(x) are all non-zero.

We can define resultants of polynomials (4) w.r.t. one

of the variables assuming the second one to be fixed:

X (x) = Ry(p(x, y), g(x, y)),
Y(y) = Rx(p(x, y), g(x, y)).

(5)

A solution of (4) is characterized by the following theo-

rem (cf. [4, Thm. 1.4.1]).

Theorem 3: If Assumption 3 holds and the pair (a, b)
solves (4), then X (a) = 0 and Y(b) = 0.
Thus, solving (4) reduces to solving a polynomial in

one variable, either X (x) = 0 or Y(y) = 0. Let a
be a root of X (x), then there exists such y = b that

Ry(p(a, y), g(a, y)) = 0 holds and hence the system

p(a, y) = 0, g(a, y) = 0 has a common root according to

Thm. 2.

The procedure of solving a system of polynomial

equations by subsequent elimination of variables is re-

ferred to as elimination theory. The following variation

of the Shape lemma (see [9]) shows a constructive way of

computing a solution to (4).

Theorem 4: If Assumption 3 holds and D(X (x)) �= 0
(i.e., X (x) does not have multiple roots) then the system

(4) is equivalent to the following system:

X (x) = 0, y = F (x),

where F (x) is a rational function over F.

Theorem 4 effectively says that if there exists a real, mul-

tiplicity 1 root of X (x) = 0, then the remaining vari-

able y is also real and can be efficiently computed as

y = F (x).
The elimination procedure described above can

equally well be applied to solving systems of polynomial

equations in more than 2 variables. The procedure will be

briefly outlined for a system of three equations in three

variables:

p(x, y, z) = 0, g(x, y, z) = 0, f(x, y, z) = 0.

The most straightforward solution is to eliminate z by

computing resultants

X (x, y) = Rz(p(x, y, z), g(x, y, z))
Y(x, y) = Rz(g(x, y, z), f(x, y, z))

(6)
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and obtain the ultimate resultant (also called eliminant)
by computing the resultant of X (x, y) and Y(x, y),

Z(x) = Ry(X (x, y),Y(x, y))
and follow the lines described above. However, it turns

out that the resulting eliminant may also yield the so

called extraneous solutions, that is, roots that do not cor-

respond to any solution of the original system. This prob-

lem can be resolved by computing all cross-resultants and

extracting their greatest common divisor, which repre-

sents the sought for the eliminant.

Typically, the roots of a polynomial belong to the al-

gebraically closed field extension of F, which is C for

F = Q or F = R. However, in most applications one

is interested in determining the real roots as these corre-

spond to physically realizable solutions. So far we as-

sumed that such a real-valued solution exists. Further-

more, Theorem 4 states that, under certain non-restrictive

conditions, the existence of a real root of the eliminant

polynomial implies that the remaining variables will also

assume real values. Thus, one can guarantee existence

of at least one real solution. In many applications this is

sufficient.

We conclude by considering one particular result that

will be useful in the following. Let p(x, y) be such that

p(x, y) = p(x,−y). This implies that one can make a

change of variables Y = y2 to get P (x, Y ) = p(x, y).
We have the following theorem [13].

Theorem 5: Let p(x, y) = p(x,−y). Let furthermore

the following conditions hold simultaneously:
1. All solutions of the equation p(x, 0) = 0 are complex,

and

2. Equation P(z) = Dx(P (x, z − x2)) = 0 does not

have positive solutions.
Then the equation p(x, y) = 0 does not have a real valued
solution.

If either of these conditions does not hold, the real root is

either given as a solution to p(x, 0) = 0, or it is computed

as a solution to the system

p(x, y) = 0

x2 + y2 =
√

ζ
,

where ζ is the least positive root of P(z) = 0.

4. DETAILING OF THE METHOD
To illustrate the proposed approach we consider a non-

holonomic control system with control vector fields X
and Y . The Lie algebra �(X,Y ) generated by {X,Y } is
assumed to be nilpotent of order 3. This implies that all

iterated Lie brackets of order 3 and higher are equal to 0.

The Lie algebra �(X,Y ) is therefore finite-dimensional

and its basis consists of the following elements (writ-

ten according to the P. Hall convention): X , Y , [X,Y ],
[X, [X,Y ]], and [Y, [Y,X]].

Example 4: Consider the vector fields

X =
∂

∂x1
− x2

∂

∂x3
+ x2

2

∂

∂x5

and

Y =
∂

∂x2
+ x1

∂

∂x3
+ x2

1

∂

∂x4
.

X and Y generate a nilpotent Lie algebra of order 3 that

satisfies

[X,Y ] = 2
∂

∂x3
+ 2x1

∂

∂x4
− 2x2

∂

∂x5
,

[X, [X,Y ]] = 2
∂

∂x4
,

[Y, [Y,X]] = 2
∂

∂x5
,

[X, [X, [X,Y ]]] = 0,

[Y, [X, [X,Y ]]] = 0.

It is worth noting that this pair of vector fields serve as

a model for the ball-plate problem [1].

We will consider the composition of the exponential

mappings

evmτY eumτX · · · ev1τY eu1τX(p), (7)

where ui, and vi, i = 1, . . . ,m are constants to be de-

fined. Since the basis of �(X,Y ) is five-dimensional, it

suffices to set m = 3. Thus, there will be 6 constants in

total.

The computation of (7) can be automated by using the

approach described above. Consider two vector fields

W =a1X+a2Y +a3[X,Y ]+a4[X, [X,Y ]]+a5[Y, [Y,X]]

Z=b1X+b2Y +b3[X,Y ]+b4[X, [X,Y ]]+b5[Y, [Y,X]],

where ai and bi are real valued constant coefficients. The
composition of the respective exponential mappings can

be written using the BCH formula:

log
[
exp(Z) exp(W )

]
=

c1X+c2Y +c3[X,Y ]+c4[X, [X,Y ]]+c5[Y, [Y,X]],

where the coefficients ci are functions of ai and bi:

c1 = a1 + b1

c2 = a2 + b2

c3 = a3 + b3 +
1

2
(a2b1 − a1b2)

c4 = a4+b4+
1

2
(a3b1−a1b3)+

1

12
(a1−b1)(a1b2−b1a2)

c5 = a5+b5− 1

2
(a3b2−a2b3)+

1

12
(b2−a2)(b2a1−b1a2).

(8)

Applying (8) iteratively we get the following expression

for (7):

log
[
ev3τY eu3τXev2τY eu2τXev1τY eu1τX

]
=

δ1τX + δ2τY + δ3τ
2[X,Y ]

+ δ4τ
3[X, [X,Y ]] + δ5τ

3[Y, [Y,X]], (9)
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where we have setm = 3 and

δ1 = u1 + u2 + u3

δ2 = v1 + v2 + v3

δ3 =
1

2
(v1u2−u1v1−v2u1−v2u2+u3v1+u3v2−v3u1

−v3u2−v3u3)

δ4 =
1

12

[
(u2

1 + u2
2 + u2

3)(v1 + v2 + v3)− 4u1u2v1

+2v2u1u2 − 4u3u1v1 − 4u3v2u1 + 2u3v1u2

−4u3v2u2 + 2v3u1u2 + 2v3u1u3 + 2v3u2u3

]

δ5 =
1

12

[
(u1 + u2 + u3)(v

2
1 + v22 + v23) + 2v1v2u1

−4v1v2u2 + 2u3v1v2 + 2v3u1v1 − 4v3v1u2

−4v3u3v1 + 2v3v2u1 + 2v3v2u2 − 4v3u3v2
]
.

(10)

The constants δi can be interpreted as coefficients of

the desired vector field Xd. Thus, the following general

control problem can be formulated.

Problem 1: Given a vector field (9) with arbitrarily

chosen coefficients δi. Find at least one set of real-valued
solutions {ui, vi}, i = 1, . . . , 3 of (10).

To simplify our further analysis we assume that δ1 �= 0
and δ2 �= 0. The case where either or both of these coef-

ficients are equal to 0 can be considered along the same

line with minor modifications1. Using this assumption

we can modify (10) to reduce the number of parameters

δi. To do so we introduce new controls ūi = ui/δ1,
v̄i = vi/δ2. Performing the substitution and dividing the

resulted polynomial equations by δ1, δ2, δ1δ2, δ
2
1δ2, and

δ1δ
2
2 we arrive at

1 = ū1 + ū2 + ū3

1 = v̄1 + v̄2 + v̄3

d3 =
1

2
(v̄1ū2−ū1v̄1−v̄2ū1−v̄2ū2+ū3v̄1+ū3v̄2−v̄3ū1

−v̄3ū2−v̄3ū3)

d4 =
1

12

[
(ū2

1 + ū2
2 + ū2

3)(v̄1 + v̄2 + v̄3)− 4ū1ū2v̄1

+2v̄2ū1ū2 − 4ū3ū1v̄1 − 4ū3v̄2ū1 + 2ū3v̄1ū2

−4ū3v̄2ū2 + 2v̄3ū1ū2 + 2v̄3ū1ū3 + 2v̄3ū2ū3

]

d5 =
1

12

[
(ū1 + ū2 + ū3)(v̄

2
1 + v̄22 + v̄23) + 2v̄1v̄2ū1

−4v̄1v̄2ū2 + 2ū3v̄1v̄2 + 2v̄3ū1v̄1 − 4v̄3v̄1ū2

−4v̄3ū3v̄1 + 2v̄3v̄2ū1 + 2v̄3v̄2ū2 − 4v̄3ū3v̄2
]
,

(11)

where d3 = δ3
δ1δ2

, d4 = δ4
δ21δ2

, and d5 = δ5
δ1δ22

(recall that

δ1 �= 0 and δ2 �= 0). In the following, we will work with

(11) dropping the bars over ui and vi.
Now we are ready to formulate the first result.

1Actually, those cases are even easier to analyze as we have at least one
homogeneous equation which is typically easier to deal with.

Theorem 6: System (11) has a solution for any choice

of parameters (d3, d4, d5).
Proof: The proof is based on computing the resultant

of the system of polynomials (11), which (after rescaling

and removing extraneous factors) takes the form

R(u3, v3) =

2
[
(6d3 + 3)v23 + (12d5 − 6d3 − 4)v3 − 12d5 + 1

]
u2
3

+
[
(24d4+12d3+4)v23+(36d23−48d4+12d3+1)v3+α

]
u3

− [
24d3d5 + 24d4d3 + 8d5 + 48d4d5 − d3 + 8d4

− 6d23 − 12d33 −
1

6

]
(12)

with α = −12d23 − 4d3 + 24d4 + 24d5 + 48d3d5 − 1.
The system (11) has a solution if there exist u∗3 ∈ R and

v∗3 ∈ R such that R(u∗3, v
∗
3) = 0. Note that the resultant

(12) can be represented as a quadratic equation in terms

of either u3 or v3 with coefficients depending on the re-

maining variable. We chose the former as in (12) and

write the discriminant of the quadratic equation as

D(v3) =
1

144
(6d4 + 3d3 + 1)

2
v43 + . . . ,

where only the high-order term was retained. There are

three cases:
• 6d4 + 3d3 �= −1. The coefficient in front of v43 is

positive and hence it is always possible to chose v3 such

that the discriminant D(v3) > 0 which, in turn, im-

plies that there exists at least one real-valued solution to

R(u∗3, v
∗
3) = 0.

• 6d4 + 3d3 + 1 = 0, d4 �= 1/12. The discriminant

D(v3) reduces to a quadratic equation with the coefficient
proportional to (12d4 − 1)4 in front of the leading term.

As the coefficient of the leading term is positive we arrive

at the same conclusion as in the previous case.

• 6d4 + 3d3 + 1 = 0, d4 = 1/12. In

this case the resultant (12) turns into R(u3, v3) =
(v3 − 12v3d5 + 12d5 − 1)u2

3, which can be easily

solved to yield a pair of real-valued controls (u∗3, v
∗
3).

Finally, having computed (u∗3, v
∗
3), the remaining vari-

ables can be computed recursively using a multivariant

analogue of Theorem 4.

Note that the set of controls u∗i , v
∗
i will in general be non-

unique. To single out a particular solution one could em-

ploy some additional criteria as described below. But first

we present a result that can be easily derived in a way

similar to Theorem 6.

Theorem 7: Let v3 = 0. Then the system (11) has a

solution for a set of parameters (d3, d4, d5) if the follow-
ing condition holds:

(
12d23 − 24d4 − 1

)×
(
36d23 − 96d5 − 72d4 + 576d25 + 1

)
> 0. (13)

Proof: This result can be proven in the same way

as Theorem 6, but setting v3 equal to 0. The resultant

R(u3) turns out to be a quadratic function in u3. Equa-

tion (13) corresponds to the case when the respective dis-

criminant is positive, thus guaranteeing that the equation
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R(u3) = 0 has exactly two distinct real-valued roots u∗3.
The remaining variables are derived from u∗3.
Note that we required (13) to be positive in order to avoid

the situation when there is a real root of multiplicity 2.

This case can be considered as well, but requires more

attention.

One particularly interesting problem statement that

can be addressed within this framework is related to the

case where the controls associated to any of two vector

fields can assume only positive values. This can be for-

mulated as follows.

Problem 2: Given a vector field (9) with arbitrary cho-

sen coefficients δi. Determine the control values ui > 0
and vi ∈ R (resp. vi > 0 and ui ∈ R), i = 1, . . . , 3
satisfying system (10).

Problem 2 can be seen as a step toward a general con-

trol system with a drift term. Indeed, a system with drift

differs from a driftless system in that there is a particular

vector field (the drift vector field) that cannot be arbitrar-

ily controlled. In particular, a drift vector field X does

not admit a backward solution, i.e., exp(−τX), a situ-

ation which may well indeed be possible for a driftless

system with a negative control (say, ui < 0 for some i).
Assume for certainty that ui > 0, i = 1, . . . , 3. The

following Lemma shows that Problem 2 can be reduced

to solving Problem 1.

Lemma 8: Problem 2 has a solution if system (10)

with η2i substituted for ui has a real-valued solution.

Proof: The modified system of polynomial equations

will have pairs of roots symmetric w.r.t. the origin. There

are two cases: a positive and a negative root correspond to

a positive ui root of (10); two complex-conjugate purely

imaginary roots correspond to a negative ui root of (10).

Lemma 8 shows a constructive way to incorporate the re-

strictions on the sign of the control variable. Note that

the resulting system of polynomial equations can be effi-

ciently analyzed for the existence of real roots using The-

orem 5.

5. CONCLUSIONS
By considering sequences of piecewise constant con-

trols and exploiting the bilinear property of the Lie

bracket, it is possible to formulate many control prob-

lems as systems of polynomial equations. We show that,

for the five-dimensional extension of the non-holonomic

integrator, it is possible to establish any desired dynamics

in discrete-time.

It is likely that similar results will hold for other sys-

tems which satisfy Chow’s theorem and whose corre-

sponding Lie algebra is nilpotent. In any case, concrete

systems can be analyzed within the proposed framework

using readily available mathematical tools. The frame-

work also allows for easy formulation of control con-

straints.

As future work we consider the controllability prob-

lem for a control system with drift. A general statement

such as Chow’s theorem will probably be unattainable,

but we expect controllability to be easily assessed on a

case by case basis. Another potential area of interest is

the case of Lie algebras that are not nilpotent.
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