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Abstract— It is well known that if the linear time invariant
system ẋ = Ax + Bu, y = Cx is passive the associated
incremental system ˙̃x = Ax̃ + Bũ, ỹ = Cx̃, with (̃·) =
(·) − (·)⋆, u⋆

,y⋆ the constant input and output associated
to an equilibrium state x⋆, is also passive. In this paper, we
identify a class of nonlinear passive systems of the forṁx =
f(x) + gu, y = h(x) whose incremental model is also passive.
Using this result we then prove that general nonlinear RLC
circuits with convex and proper electric and magnetic energy
functions and passive resistors with monotonic characteristic
functions are globally stabilizable with linear PI control.

I. PROBLEM FORMULATION

In many control applications one is interested in operating
the system around anon–zeroequilibrium point. A standard
procedure to describe the dynamics in these cases is to
generate a so–calledincremental model—whose equilibrium
is at zero and with inputs and outputs the deviations with
respect to their value at the equilibrium. A natural question
that arises is whether a property of the original system
is inherited by its incremental model. In this paper, we
explore this question regarding passivity. More specifically,
we provide a solution to the following problem.

(Passivity of Incremental Systems)Given a nonlinear system
of the form

ẋ = f(x) + gu

y = h(x), (1)

where x,u,y are functions oft, x(t) ∈ R
n,u(t),y(t) ∈

R
m, with m ≤ n, the functionsf ,h are locally Lipschitz

and the matrixg ∈ R
n×m is constant and has full rank.

Define the incremental model

˙̃x = f(x̃ + x⋆) − f(x⋆) + gũ

ỹ = h(x) − h(x⋆),
(2)

where(̃·) = (·)−(·)⋆ are the incremental variables,x⋆ ∈ R
n

is an equilibrium point, that is,

x⋆ ∈ E := {x̄ ∈ R
n | g⊥f(x̄) = 0}, (3)
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whereg⊥ ∈ R
(n−m)×n is a full–rank left–annihilator ofg,

i.e., g⊥g = 0 and rank{g⊥} = n − m, andu⋆,y⋆ ∈ R
m

are the constant input and output vectors associated to the
equilibrium statex⋆, that is

u⋆ = (g⊤g)−1g⊤f(x⋆)
y⋆ = h(x⋆).

(4)

Assume (1) defines a passive mappingu → y. Under which
conditions the mapping̃u → ỹ, defined by (2), is also
passive?

The main contributionsof this paper are, first, the estab-
lishment of a condition on the vector fieldf(x) to ensure
passivity of the mapping̃u → ỹ. Second, we prove that a
large class of nonlinear RLC circuits—with convex electric
and magnetic energy functions and passive resistors with
monotonic characteristic functions—satisfy this condition,
hence showing that these circuits can be globally stabilized
with linear PI control.

II. SOME COMMENTS AND MOTIVATION

1. The question posed above can be recast without
invoking incremental models, but using the more general
concept of dissipative systems [11], as follows. Assume
(1) is dissipative with supply rateu⊤y, (this is, of course,
equivalent to passivity of the mappingu → y). Under
which conditions (1) is also dissipative with respect to the
incremental supply ratẽu⊤ỹ? In view of the ubiquity of
incremental models in applications we have opted for the
formulation of the problem given above.

2. Invoking Kalman–Yakubovich–Popov’s Lemma [10] it
is easy to establish that all passive linear time invariant
(LTI) systems have passive incremental models. Indeed, if
H(x) = 1

2x
⊤Px, with P ∈ R

n×n,P = P⊤ > 0, is a
storage function for the original system,H(x̃) = 1

2 x̃
⊤Px̃

is a storage function for the incremental model as well.

3. Passivity of incremental models has been explored in
[6] for the case when (1) is a port controlled Hamiltonian
system [10]. Actually, the storage function constructed
here is the one used in [6]—but expressed in the original
coordinates of the system, see Remark 1.

4. Motivations to establish passivity of incremental models
are manifold. It has been used in [5] for tracking and
disturbance rejection—via internal model principles—in
passive systems. Another immediate application concerns



energy–balancing stabilization. As defined in [9] a system
is energy–balancing stabilizable if there exists a static
state–feedback that assigns to the closed–loop system
a storage function equal to the difference between the
(open–loop) systems stored energy and the energy supplied
by the controller, i.e.,

∫

u⊤(s)y(s)ds. As indicated in [9],
see also [8], energy–balancing stabilization is stymied by
the presence of pervasive dissipation. The latter is defined
as dissipation that makes the supplied power evaluated at
the equilibrium non–zero, that is(u⋆)⊤y⋆ 6= 0. It is clear
that this obstacle is conspicuous by its absence in systems
with passive incremental models. Results stemming from
this observation will be reported elsewhere.

5. We have adopted in the paper the standard convention of
defining passive systems in terms of the existence of anon–
negativestorage function.1 As will become clear below, all
our derivations remain valid if we relax the non–negativity
assumption. These, obviously larger, class of systems are
referred in [8] as energy–balancing and in [12], [4] as cyclo–
passive—a name that is motivated by the fact that cyclo–
passive systems cannot create energyover closed pathsin
the state–space, in contrast with passive system that cannot
create energyfor all trajectories.

III. PASSIVITY OF INCREMENTAL SYSTEMS

Proposition 1: Assume:

A.1 The system (1) defines a passive mappingu → y

with a convex twice continuously differentiable storage
function H : R

n → R+.
A.2 The “incremental stability” condition

[f(x) − f(x⋆)]⊤[∇H(x) −∇H(x⋆)] ≤ 0 (5)

is satisfied.2

Then, the mapping̃u → ỹ, defined by (2) is also passive
with convex storage functionH0 : R

n → R+,

H0(x̃) = H(x̃ + x⋆) − H(x⋆) − x̃⊤∇H(x⋆). (6)

Proof: First, we recall from Hill–Moylan’s nonlinear
version of Kalman–Yakubovich–Popov’s Lemma [10] that
passivity of (1) implies

h(x) = g⊤∇H(x). (7)

Let us now compute

ỹ⊤ũ = [∇H(x) −∇H(x⋆)]⊤gũ

= [∇H(x) −∇H(x⋆)]⊤[ ˙̃x − f(x̃ + x⋆) + f(x⋆)]

= Ḣ0−[∇H(x)−∇H(x⋆)]⊤[f(x̃ + x⋆) − f(x⋆)]

≥ Ḣ0,

1Actually, as one can always add a constant to the storage function, the
question is whether it is bounded from below or not.

2All vectors defined in the paper arecolumnvectors, even the gradient
of a scalar function that we denote with the operator∇x = ∂/∂x. When
clear from the context the sub-index will be omitted.

where we have used (7) in the first identity, (2) in the second,
(6) in the third and (5) to obtain the inequality. Integrating
the inequality above we get

∫ t

0

ỹ⊤(s)ũ(s) ds ≥ H0(x̃(t)) − H0(x̃(0)).

We will now prove thatH0(x̃) is nonnegative. Using
convexity ofH(x), we obtain

∂2H0

∂x̃2
(x̃) =

∂2H

∂x2
(x) ≥ 0,

which shows the convexity ofH0(x̃). Since∇H0(0) = 0
and H0(x̃) is convex, the point0 is a minimum point of
H0(x̃). This implies also thatH0(x̃) ≥ 0.

Remark 1:The storage functionH0(x̃) can be directly
derived from [6]—where the case of port Hamiltonian
systems is considered and the analysis is carried out in
co–energy coordinates (∇H(x) in our notation). Indeed,
integrating equation (10) from that paper and expressing
the function in the original (energy) coordinates, denotedx

here and calledz in [6], yields (6).

Remark 2:Passivity of (1) imposes, besides (7), the
stability condition f⊤(x)∇H(x) ≤ 0. This motivates the
name “incremental stability” given to inequality (5).

Remark 3: In the LTI case with quadratic storage function
(5) reduces to the stability conditioñx⊤PAx̃ ≤ 0, while
the new storage function is given byH0(x̃) = 1

2 x̃
⊤Px̃.

This appealing downward compatibility makes our result a
natural extension, to the nonlinear case, of the well–known
property of LTI systems.

Remark 4: If (1) is a port controlled Hamiltonian system
we have

f(x) = [J(x) − R(x)]∇H(x),

where J(x) = −J⊤(x) is the interconnection matrix and
R(x) = R⊤(x) ≥ 0 captures the dissipation effects. The
incremental stability condition (5) will be then satisfied if J

and R are constantmatrices. This corresponds to constant
interconnections and linear damping—the former is often
the case in physical systems, for instance for nonlinear
mechanical systems or nonlinear LC circuits. In the next
section we will prove that the incremental model of passive
RLC circuits is passive also in the case when the resistors
are nonlinear, but with monotonic characteristic function.

Remark 5:For port–controlled Hamiltonian systems with
constant interconnection and damping matrices the storage
function for the incremental model given in (6) results from
a direct application of the Interconnection and Damping
Assignment controller design methodology [9]. Indeed, in
its simpler formulation, the objective of this controller is
to shape the storage function of the system assigning to
the closed–loop the dynamicṡx = (J − R)∇Hd(x) + gv,
whereHd(x) is the desired storage function andv is a free



external signal.Fixing v = ũ we see that the objective will
be achieved withHd(x) = H0(x); and by definition of the
equilibrium set (3), the matching equation

−gu⋆ = (J − R)∇H(x⋆),

always has a solution.

It is easy to see that the new storage functionH0 as in (6)
has a minimum at0 and H0(0) = 0. However, the point0
may not be a unique minimum. The following lemma shows
that a strongly convexH is sufficient to ensure that the new
storage functionH0 has a unique minimum at0 and it is
proper. By properness of the functionH0 we mean that for
any constantc > 0 the set{x ∈ R

n |H0(x) ≤ c} is compact.

Lemma 1:Consider a strongly convex storage function
H ∈ C2. Then the functionH0 ∈ C2 as in (6) is proper
and has a unique minimum at0.

Proof: It can be readily checked thatH0, being globally
strictly convex, has a unique global minimum at the origin.

In order to prove properness ofH0, we demonstrate that
for every c ≥ 0 the setMc = {x̃ ∈ R

n |H0(x̃) ≤ c} is
compact. Strong convexity ofH0 implies that the setsMc

are bounded [1, p. 460] and continuity implies that they are
closed [2, p.17]. Since the setsMc have a finite dimension,
it follows that they are compact.

IV. PI STABILIZATION OF NONLINEAR RLC
CIRCUITS

In this section, we prove that a large class of nonlinear
RLC circuits—with convex electric and magnetic energy
functions and passive resistors with monotonic characteristic
functions—satisfy the condition of Proposition 1, hence
showing that these circuits can be globally stabilized with
linear PI control.

We consider RLC circuits consisting of interconnections
of (possibly nonlinear) lumped dynamic (nL inductors,nC

capacitors) and static (nR resistors,nvS
voltage sources and

niS
current sources) elements. Capacitors and inductors are

defined by the physical laws and constitutive relations [3]:

iC = q̇C , vC = ∇HC(qC), (8)

vL = φ̇L, iL = ∇HL(φL), (9)

respectively, whereiC(t), vC(t), qC(t) ∈ R
nC are the

capacitors currents, voltages and charges, andiL(t), vL(t),
φL(t) ∈ R

nL are the inductors current, voltage and flux–
linkages,HL : R

nL → R is the magnetic energy stored in
the inductors andHC : R

nC → R is the electric energy
stored in the capacitors. We also define the total energy as

H(φL,qC) = HL(φL) + HC(qC).

To avoid cluttering (even more) the notation, and without
loss of generality, we will consider that all current (resp.
voltage) controlled resistors are in series with inductors
(resp. in parallel with capacitors). In this way, we can write
vRLi

= v̂RLi
(iLi

) for the current controlled resistors and

+ −

+ −

Li RLi

vRLi
= v̂RLi

(iLi
)

RCi

Ci

vCi
= ∂HC

∂qCi

iRCi
= îRCi

(vCi
)

iLi
= ∂HL

∂φLi

Fig. 1. Current controlled resistors in series with inductors and voltage
controlled resistors in parallel with capacitors

iRCi
= îRCi

(vCi
) for the voltage controlled resistors, where

v̂RLi
, îRCi

: R → R are their characteristic curves. See
Fig. 1

The dynamics of the circuit can be written as a slight
extension—to the case of nonlinear resistors—of the port–
controlled Hamiltonian model of LC circuits described in
[7]3

[

φ̇L

q̇C

]

= J ∇H−

[

v̂RL
(∇HL(φL))

îRC
(∇HC(qC))

]

+ g u (10)

where

J =

[

0 −Γ

Γ⊤ 0

]

, g =

[

−BvS
0

0 BiS

]

, u =

[

vvS

iiS

]

.

vvS
(t) ∈ R

nvS are the voltage sources (in series with
inductors), iiS

(t) ∈ R
niS the current sources (in parallel

with capacitors),BvS
∈ R

nL×nvS , BiS
∈ R

nC×niS are
input (full rank) matrices withnvS

≤ nL, niS
≤ nC and

Γ ∈ R
nL×nC , is a constant matrix determined by the circuit

topology.
The port variables are completed defining the currents and

voltages of the sources, which are given by

y = g⊤∇H =

[

−B⊤
vS
∇HL(φL)

B⊤

iS
∇HC(qC)

]

(11)

Proposition 2: Consider the dynamics of the nonlinear
RLC circuit (10), (11). Let(φL⋆,qC⋆) be an equilibrium
point with the corresponding constant inputu⋆ and output
y⋆. Assume
B.1 Inductors and capacitors are passive and their en-

ergy functions are twice continuously differentiable and
strongly convex.

B.2 The resistors are passive and their characteristic func-
tions are monotone non–decreasing.

Then, the circuit in closed–loop with the PI controller

ξ̇ = −ỹ

u = KIξ − KP ỹ
(12)

3Notice that if the resistors are linear, equation (10) takesthe more
familiar form ẋ = [J − R]∇H + gu [10].



whereKI = K⊤

I > 0, KP = K⊤

P > 0, ensures all state
trajectories(φL(t),qC(t), ξ(t)) are bounded and

lim
t→∞

‖ỹ(t)‖ = 0.

If, in addition, the closed loop system (10), (11), (12)
satisfies the detectability assumption

B.3

ỹ(t) ≡ 0, ũ(t) ≡ 0 ⇒ lim
t→∞

∥

∥

∥

∥

[

φ̃L(t)
q̃C(t)

ξ̃(t)

]∥

∥

∥

∥

= 0,

whereξ⋆ = K−1
I u⋆.

Then,

lim
t→∞

∥

∥

∥

∥

[

φ̃L(t)
q̃C(t)

ξ̃(t)

]∥

∥

∥

∥

= 0.

Proof: First, invoking Proposition 1, we will prove that
the incremental model of the circuit defines a passive system
ũ → ỹ with a proper positive definitestorage function. Since
the PI is a passive system, the proof will be then completed
with standard passivity–based control arguments.

As is well–known RLC circuits with passive elements are
passive [3] with storage function their total energy. Indeed,
computing

Ḣ(φL,qC) = −i⊤L v̂RL
(iL) − v⊤

C îRC
(vC) + y⊤u

≤ y⊤u

where we have used (8), (9) and (11) to get the identity
and passivity of the resistors of Assumption B.2 to obtain
the inequality.4 Non–negativity ofH(φL,qC) follows from
passivity of inductors and capacitors of Assumption B.1.

To prove passivity of the incremental model of (10), (11)
we need to verify the “incremental” stability condition (5)
which after some calculations becomes

[

−v̂RL
(∇HL(φL)) + v̂RL

(∇HL(φ⋆
L))

−îRC
(∇HC(qC)) + îRC

(∇HC(q⋆
C))

]⊤

×

[

∇HL(φL) −∇HL(φ⋆
L)

∇HC(qC) −∇HL(q⋆
C)

]

=

= −(v̂RL
(iL) − v̂RL

(i⋆L))⊤(iL − i⋆L)

−(̂iRC
(vC) − îRC

(v⋆
C))⊤(vC − v⋆

C)

≤ 0,

where we have used equations (8) and (9) for the first
identity and the monotonic resistors characteristic condition
of Assumption B.2 for the inequality.

The storage function for the incremental model is com-
puted from (6) as

H0(φ̃L, q̃C) = HL(φ̃L + φ⋆
L) + HC(q̃C + q⋆

C) − HL(φ⋆
L)

−HC(q⋆
C) − φ̃⊤

L∇HL(φ⋆
L) − q̃⊤

C∇HC(q⋆
C)

(13)

4We recall that resistors are passive if and only if their characteristic
function lives in the first–third quadrant [3].

which, under Assumption B.1, is strongly convex and has a
global minimum at the origin.

According to Lemma 1, the functionH0 is proper and has
a unique global minimum at0.

To complete the proof of the proposition we note that the
incremental model of the closed–loop system takes the form

ż = F (z), ỹ = H(z),

where z = col(φ̃L, q̃C , ξ̃) and F (z),H(z) are continuous.
We, thus, consider the (positive definite and proper) Lya-
punov function candidate

Hcl(z) = H0(φ̃L, q̃C) +
1

2
ξ̃⊤KI ξ̃.

Computing the derivative

Ḣcl ≤ ỹ⊤ũ − ξ⊤KI ỹ

= −ỹ⊤KP ỹ.
(14)

It follows from (14) that the statez(t) is bounded and̃y(t) is
square integrable. From continuity ofF (z), this also implies
that ż(t) is bounded, hencez(t) is uniformly continuous.
From continuity ofH(z) we also have that̃y(t) is uniformly
continuous, and we concludelim

t→∞
‖ỹ(t)‖ = 0.

Convergence of the incremental state to zero follows using
LaSalle’s invariance principle and invoking the zero–state
detectability of Assumption B.3 (see, for example, [10]).

V. CONCLUSIONS AND FUTURE RESEARCH

We have considered general affine passive systems with
constant input matrix. We defined an “incremental stability”
condition on the vector fieldf(x) that ensures passivity
of the incremental model. Then, we showed that a large
class of nonlinear passive RLC circuits—with convex and
proper electric and magnetic energy functions and monotonic
resistor characteristics—satisfy this condition. Hence, these
circuits can be globally stabilized with linear PI control.

Current research is under way along two directions. First,
to employ these results for energy–balancing stabilization of
physical systems. Second, to derive conditions for passivity
of more general error models, for instance, those that appear
when tracking feasible trajectories.
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