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Abstract— It is well known that if the linear time invariant WherEgL € R(n—m)xn jg g full-rank left—annihilator of;,
systemx = Ax + Bu, y = Cx is passive the associated je. glg = 0 and rang*} = n — m, andu*,y* € R™

incremental fysﬁeThi = Atf‘ :—_Bﬁ,t y n th" tWith () =4 @re the constant input and output vectors associated to the
() = ()%, u*,y* the constant input and output associate equilibrium statex*, that is

to an equilibrium state x*, is also passive. In this paper, we

identify a class of nonlinear passive systems of the formx = = (ng)_lng(x*)
f(x) + gu, y = h(x) whose incremental model is also passive. . h(x) 4)
Using this result we then prove that general nonlinear RLC yo = )

circuits with convex and proper electric and magnetic energy  Assume (1) defines a passive mapping- y. Under which

functions and passive resistors with monotonic characteristic . L ~ . .
functions are globally stabilizable with linear PI control. gggg;\t/'ggs the mappingt — y, defined by (2), is also

|. PROBLEM FORMULATION The main contributionsof this paper are, first, the estab-
._lishment of a condition on the vector fielt{x) to ensure
gassivity of the mappindi — y. Second, we prove that a
I%ge class of nonlinear RLC circuits—with convex electric
and magnetic energy functions and passive resistors with
onotonic characteristic functions—satisfy this conditio

the system around mon—zeroequilibrium point. A standard
procedure to describe the dynamics in these cases is
generate a so—calledcremental modetwhose equilibrium
IS at zero anci with inputs and Qiitputs the deviations V\.”t ence showing that these circuits can be globally stakiilize
respect to their value at the equilibrium. A natural questio ., ~.

. . o with linear PI control.
that arises is whether a property of the original system
is inherited by its incremental model. In this paper, we II. SOME COMMENTS AND MOTIVATION
explore this question regarding passivity. More specifical 1

) ) ) The question posed above can be recast without
we provide a solution to the following problem. q P

invoking incremental models, but using the more general
concept of dissipative systems [11], as follows. Assume
(1) is dissipative with supply rate "y, (this is, of course,
equivalent to passivity of the mapping — y). Under
x = f(x)+gu i/vhich conditions (1) is also dissipative with res_pet;t to the
y = h(x) 1 incremental supply raté’§? In view of the ubiquity of

’ incremental models in applications we have opted for the

wherex, u,y are functions oft, x(t) € R”, u(t),y(t) € formulation of the problem given above.

R™, with m < n, the functionsf,h are locally Lipschitz ) _ .
and the matrixg € R™"*™ s constant and has full rank. 2. Invoking Kalman—Yakubovich—Popov’s Lemma [10] it

Define the incremental model is easy to establish that all passive linear time invariant
(LTI) systems have passive incremental models. Indeed, if

() Hx) = ix"Px, with P € R™" P = PT > 0, is a
storage function for the original systerf(x) = 1x"Px

where(’) = (-)—(-)* are the incremental variables* € R" is a storage function for the incremental model as well.

is an equilibrium point, that is,

(Passivity of Incremental Systenjven a nonlinear system
of the form

x = f(x+x*)—f(x*)+gu
= h(X) - h(X*)a

<

3. Passivity of incremental models has been explored in
x* €& :={xeR"|gf(x) =0}, (3) [6] for the case when (1) is a port controlled Hamiltonian
system [10]. Actually, the storage function constructed
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energy—balancing stabilization. As defined in [9] a systemvhere we have used (7) in the first identity, (2) in the second,
is energy—balancing stabilizable if there exists a stati(6) in the third and (5) to obtain the inequality. Integrgtin
state—feedback that assigns to the closed—loop systehe inequality above we get

a storage function equal to the difference between the '

(open—loop) systems stored energy and the energy supplied / v (s)ti(s) ds > Ho(x(t)) — Ho(%(0)).

by the controller, i.e.,/u' (s)y(s)ds. As indicated in [9], 0

see also [8], energy-balancing stabilization is stymied by we will now prove thatH,(x) is nonnegative. Using
the presence of pervasive dissipation. The latter is define@nvexity of H(x), we obtain

as dissipation that makes the supplied power evaluated at

the equilibrium non-zero, that ig1*)"y* # 0. It is clear 0*Ho (%) = 32H(X) >0

that this obstacle is conspicuous by its absence in systems ox? ox? -

with passive incremental models. Results stemming frofghich shows the convexity of,(x). Since VHy(0) = 0

this observation will be reported elsewhere. and Hy(%) is convex, the poind is a minimum point of
Hy(x). This implies also thaf{,(x) > 0. ]

5. We have adopted in the paper the standard convention ofRemark 1:The storage functionffy (%) can be directly
defining passive systems in terms of the existencemdra- derived from [6]—where the case of port Hamiltonian
negativestorage functiont. As will become clear below, all systems is considered and the analysis is carried out in
our derivations remain valid if we relax the non-negativityco—energy coordinatesV( (x) in our notation). Indeed,
assumption. These, obviously larger, class of systems &grgegrating equation (10) from that paper and expressing
referred in [8] as energy-balancing and in [12], [4] as cyclothe function in the original (energy) coordinates, denated
passive—a name that is motivated by the fact that cyclokere and called in [6], yields (6).
passive systems cannot create enevggr closed pathsn
the state-space, in contrast with passive system that tannorRemark 2:Passivity of (1) imposes, besides (7), the
create energyor all trajectories. stability conditionf " (x)VH(x) < 0. This motivates the
name “incremental stability” given to inequality (5).

[1l. PASSIVITY OF INCREMENTAL SYSTEMS

Proposition 1: Assume: Remark 3:In the LTI case with quadratic storage function
(5) reduces to the stability conditioR' PAx < 0, while
the new storage function is given b,(x) = 1x"Px.
This appealing downward compatibility makes our result a
natural extension, to the nonlinear case, of the well-known
property of LTI systems.

A.1 The system (1) defines a passive mapping— y
with a convex twice continuously differentiable storag
function H : R" — R,.

A.2 The “incremental stability” condition

[f(x) — £(x")] " [VH(x) - VH(x")] <0 (5) : I
Remark 4:1f (1) is a port controlled Hamiltonian system

is satisfied: we have
Then, the mappingi — y, defined by (2) is also passive f(x) = [J(x) - R(x)]VH (x),

with convex storage functiolo : R" — R, where J(x) = —J"(x) is the interconnection matrix and

Ho(X) = H(X + x*) — H(x*) - X VH(x*).  (6) R(x) = RT(x) > 0 captures the dissipation effects. The
incremental stability condition (5) will be then satisfiddJi

Proof: First, we recall from Hill-Moylan’s nonlinear and R are constantmatrices. This corresponds to constant

version of Kalman-Yakubovich—-Popov's Lemma [10] thainterconnections and linear damping—the former is often

passivity of (1) implies the case in physical systems, for instance for nonlinear
- mechanical systems or nonlinear LC circuits. In the next
h(x) =g VH(x). (7)  section we will prove that the incremental model of passive

RLC circuits is passive also in the case when the resistors

Let us now compute . . . . )
P are nonlinear, but with monotonic characteristic function

y'a = [VH(x)-VH(x")]'g _ . .
~ [VH(x) H( o [ £(% + x*) + £(x)] Remark 5:For port—_controlled Har_mltonlan_ systems with
constant interconnection and damping matrices the storage
= Ho—[VH( )= VH(x")]"[f(x+x") = £(x*)]  function for the incremental model given in (6) results from
> Hy, a direct application of the Interconnection and Damping

Assignment controller design methodology [9]. Indeed, in
!Actually, as one can always add a constant to the storagdidanche  its simpler formulation, the objective of this controlles i

question is whether it is bounded from below or not. __to shape the storage function of the system assigning to
All vectors defined in the paper amlumnvectors, even the gradient

of a scalar function that we denote with the operafgr = 8/0x. When the Closed_lQOp the dy_namio's: J- R).VHd(X) +8v,
clear from the context the sub-index will be omitted. where H,;(x) is the desired storage function amds a free



external signalFixing v = @ we see that the objective will L; Ry,

be achieved witht/;(x) = Hy(x); and by definition of the M
. 9HY -

equilibrium set (3), the matching equation L = g, + o, (in.)
i URL = URLi ZLl
—gu* = (J—-R)VH(x"),
) Ver = OH¢
always has a solution. fi dac,; _

It is easy to see that the new storage functiépas in (6) E

has a minimum ab and Hy(0) = 0. However, the point
may not be a unique minimum. The following lemma shows - .
that a strongly conveX! is sufficient to ensure that the new
storage functionH, has a uniqgue minimum &t and it is VWA
proper. By properness of the functidii, we mean that for Re,
any constant > 0 the set{x € R | Hy(x) < c} is compact.

Lemma 1:Consider a strongly convex storage functiorFig. 1. Current controlled resistors in series with industand voltage
H € C2. Then the functionH, € C2 as in (6) is proper controlled resistors in parallel with capacitors
and has a unique minimum at

Proof: It can be readily checked thak,, being globally ire, = ire, (ve,) for the voltage controlled resistors, where
strictly convex, has a unique global minimum at the originvr,.ir,, : R — R are their characteristic curves. See
In order to prove properness @f;, we demonstrate that Fig. 1
for everyc > 0 the setM, = {x € R"|Hy(x) < c} is The dynamics of the circuit can be written as a slight
compact. Strong convexity off, implies that the setd/, extension—to the case of nonlinear resistors—of the port—
are bounded [1, p. 460] and continuity implies that they areontrolled Hamiltonian model of LC circuits described in
closed [2, p.17]. Since the seid, have a finite dimension, [7]*

it follows that they are compact. ] ] o H
[‘?L]: JVH—F’RL(v Lm))h gu (10)
IV. PI STABILIZATION OF NONLINEAR RLC dc irc(VHe(ac))
CIRCUITS where
In this section, we prove that a large class of nonlinear J— 0 -Tr _|7Bws O u= |Vos
RLC circuits—with convex electric and magnetic energy r o}’ 0 Big]’ iig |-

functions and passive resistors with monotonic charastieri vy (t) € R™s are the voltage sources (in series with
S

functipns—satisfy thg cqndition of Proposition 1 hen?‘?nductors),iis(t) € R"s the current sources (in parallel
showing that these circuits can be globally stabilized witkyiip, capacitors)B,, € R":*™s, B,. € R'X"is are
Dyg ’ 15

linear PI control. o o . __input (full rank) matrices withn,, < nr, n;; < nc and

We consider RLC circuits consisting of interconnectiong- < pr.xne is a constant matrix determined by the circuit
of (possibly nonlinear) lumped dynamie inductors,ng¢ topology.
capacitors) and statia:f, resistorsy, voltage sources and  The port variables are completed defining the currents and
n;s current sources) elements. Capacitors and inductors gfg§itages of the sources, which are given by
defined by the physical laws and constitutive relations [3]:

~B/ VHL(¢1)
. —g'VH = ws ¥ TEAVL 11
ic =4, ve = VHe(ao), (®) y=gV [BLVHc;(qc) (1)
vr =¢r, ir=VHy(ér), 9) Proposition 2: Consider the dynamics of the nonlinear

. RLC circuit (10), (11). Let(¢r.,ac+) be an equilibrium
respectively, whereic(t), vo(t), ac(t) € R" are the point with the corresponding constant input and output
capacitors currents, voltages and charges, iaiit), v (), y*. Assume

¢, (t) € R"* are the inductors current, voltage and flux-g 1 |nductors and capacitors are passive and their en-

linkages, Hy, : R"* — R is the magnetic energy stored i ergy functions are twice continuously differentiable and

the inductors andds : R"¢ — R is the electric energy strongly convex.

stored in the capacitors. We also define the total energy ag 2 The resistors are passive and their characteristic func-
H(br,q0) = Hi(é1) + Holqo). tions are monotone non-decreasing.

Then, the circuit in closed—loop with the PI controller
To avoid cluttering (even more) the notation, and without .

loss of generality, we will consider that all current (resp. § f I_(y Kov (12)
voltage) controlled resistors are in series with inductors U= 1§ = Kpy

(resp. in Paral[el with capacitors). In this way, we can @It snotice that if the resistors are linear, equation (10) takes more
Vg, = Vg, (ir,) for the current controlled resistors andfamiliar form x = [J — R]VH + gu [10].



where K; = K] > 0, Kp = K}, > 0, ensures all state which, under Assumption B.1, is strongly convex and has a
trajectories(¢,(t), qc(t),£(t)) are bounded and global minimum at the origin.

}H{}c [y @ = 0. According to Lemma 1, the functiofi, is proper and has
unigue global minimum &i.
To complete the proof of the proposition we note that the
incremental model of the closed—loop system takes the form

If, in addition, the closed loop system (10), (11), (12)a
satisfies the detectability assumption

B.3
br(t) s = F g=H
y(t)=0,u(t) =0 :>thm Hl:q;(t):l” =0, ~z EZ)> Y (2),
Tl e where z = col(¢r, qc, &) and F(z), H(z) are continuous.
where¢* = K;lu*. We, thus, consider the (positive definite and proper) Lya-
Then punov function candidate
, br(t) - 1. N
Jin |50 || o, Ha(z) = Ho(9r, ac) + 5€ Kié.
—lL &)

Computing the derivative
Proof: First, invoking Proposition 1, we will prove that . T
the incremental model of the circuit defines a passive system He yu- ¢ Kry
a — y with aproper positive definitstorage function. Since —y Kpy.
the Pl is a passive system, the proof will be then completegfollows from (14) that the state(t) is bounded ang(¢) is
with standard passivity—based control arguments. square integrable. From continuity &7(z), this also implies
As is well-known RLC circuits with passive elements arehat :(¢) is bounded, hence(t) is uniformly continuous.
passive [3] with storage function their total energy. Irtiee From continuity of/(2) we also have tha(t) is uniformly
computing continuous, and we concluotlhm l¥(t)] = 0.
H(¢L7 ac) Convergence of the incremental state to zero follows using
LaSalle’s invariance principle and invoking the zero-estat
detectability of Assumption B.3 (see, for example, [108.

<

(14)

—i] VR, (ir) — Véine (ve) +y ' u

y'u

<

where we have used (8), (9) and (11) to get the identity V. CONCLUSIONS AND FUTURE RESEARCH
and passivity of the resistors of Assumption B.2 to obtain

the inequality’ Non—negativity ofH (¢, qc) follows from We ha\_/e conside_red gene(al affine“_passive system;_with
passivity of inductors and capacitors of Assumption B.1. constant input matrix. We defined an “incremental stafility
To prove passivity of the incremental model of (10), (11)cond|t|0n on the vector field(x) that ensures passivity

we need to verify the “incremental” stability condition (5) of the |ncren_1ental mod_el. Then, _we_show_ed that a large
which after some calculations becomes class of nonlinear passive RLC circuits—with convex and
-
] x

proper electric and magnetic energy functions and monotoni
—Vr, (VHL(¢L)) + VR, (VHL(6})) resistor characteristics—satisfy this condition. Henbesé
{—iRC(VHC(qC)) +ir. (VHe(ab)) circuits can be globally stabilized with linear PI control.
Current research is under way along two directions. First,
[VHL(%) - VHL(%)} to employ these results for energy—balancing stabilinatib
VHc(qe) = VHL(ag)
—(Vr, (i) = v, (7)) T (iL —i})

physical systems. Second, to derive conditions for pagsivi
of more general error models, for instance, those that appea
when tracking feasible trajectories.

~(ire (ve) = ira(vE) T (Ve = vE)
0,

ACKNOWLEDGMENTS

The second author thanks Arjan van der Schaft for many
&elpful discussions on the topic of this paper.

<

where we have used equations (8) and (9) for the fir
identity and the monotonic resistors characteristic ctonli
of Assumption B.2 for the inequality.

The storage function for the incremental model is com-
puted from (6) as
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